
bluetooth-clocks Documentation
Release 0.2.0.post1.dev2+g5085e7a

Koen Vervloesem

Oct 28, 2023

CONTENTS

1 Contents 3
1.1 Installation and usage . 3
1.2 Supported devices . 5
1.3 Contributing . 6
1.4 License . 10
1.5 Contributors . 10
1.6 Changelog . 10
1.7 bluetooth_clocks . 11

2 Indices and tables 25

Python Module Index 27

Index 29

i

ii

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Set and get the time on various Bluetooth Low Energy clocks

This project offers a way to easily recognize Bluetooth Low Energy (BLE) clocks from their advertisements and has a
device-independent API to set and get the time on them.

CONTENTS 1

https://github.com/koenvervloesem/bluetooth-clocks/actions
https://pypi.org/project/bluetooth-clocks/
https://python.org/
https://bluetooth-clocks.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/koenvervloesem/bluetooth-clocks
https://github.com/koenvervloesem/bluetooth-clocks/blob/main/LICENSE.txt

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation and usage

1.1.1 Installation

You can install bluetooth-clocks as a package from PyPI with pip:

pip install bluetooth-clocks

1.1.2 Usage of the command-line program

If you have installed the package with pip, you can run the program as bluetooth-clocks:

$ bluetooth-clocks -h
usage: bluetooth-clocks [-h] [--version] [-v] [-vv] {discover,get,set} ...

Bluetooth Clocks

options:
-h, --help show this help message and exit
--version show program's version number and exit
-v, --verbose set loglevel to INFO
-vv, --very-verbose set loglevel to DEBUG

Subcommands:
{discover,get,set}
discover discover supported Bluetooth clocks
get get the time from a Bluetooth clock
set set the time of a Bluetooth clock

3

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Discovering Bluetooth clocks

You can discover supported Bluetooth clocks with bluetooth-clocks discover:

$ bluetooth-clocks discover
Scanning for supported clocks...
Found a ThermoPro TP358: address BC:C7:DA:6A:52:C6, name TP358 (52C6)
Found a Xiaomi LYWSD02: address E7:2E:00:B1:38:96, name LYWSD02
Found a ThermoPro TP393: address 10:76:36:14:2A:3D, name TP393 (2A3D)
Found a Qingping BT Clock Lite: address 58:2D:34:54:2D:2C, name Qingping BT Clock Lite
Found a Current Time Service: address EB:76:55:B9:56:18, name F15

These are the options that the discover subcommand recognizes:

$ bluetooth-clocks discover -h
usage: bluetooth-clocks discover [-h] [-s SCAN_DURATION]

options:
-h, --help show this help message and exit
-s SCAN_DURATION, --scan-duration SCAN_DURATION

scan duration (default: 5 seconds)

Setting the time

Set the time of a clock with a given Bluetooth address:

$ bluetooth-clocks set -a E7:2E:00:B1:38:96
Scanning for device E7:2E:00:B1:38:96...
Writing time to device...
Synchronized time

If you want to regularly synchronize the time on the device, you can run this command as a service, e.g. with a systemd
service or in a cron job in Linux.

These are the options that the set subcommand recognizes:

$ bluetooth-clocks set -h
usage: bluetooth-clocks set [-h] -a ADDRESS [-s SCAN_DURATION] [-t TIME] [-p]

options:
-h, --help show this help message and exit
-a ADDRESS, --address ADDRESS

Bluetooth address (e.g. 12:34:56:78:9A:BC)
-s SCAN_DURATION, --scan-duration SCAN_DURATION

scan duration (default: 5 seconds)
-t TIME, --time TIME the time to set, in ISO 8601 format (e.g. 2023-01-10T16:20,

default: current time)
-p, --am-pm use AM/PM format (default: 24-hour format)

Warning: Don’t be a jerk by changing the time of other people’s clocks. Use this tool responsibly.

4 Chapter 1. Contents

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Getting the time

Get the time from a clock with a given Bluetooth address:

$ bluetooth-clocks get -a E7:2E:00:B1:38:96
Scanning for device E7:2E:00:B1:38:96...
Reading time from device...
2023-01-14T17:54:17

These are the options that the get subcommand recognizes:

$ bluetooth-clocks get -h
usage: bluetooth-clocks get [-h] -a ADDRESS [-s SCAN_DURATION]

options:
-h, --help show this help message and exit
-a ADDRESS, --address ADDRESS

Bluetooth address (e.g. 12:34:56:78:9A:BC)
-s SCAN_DURATION, --scan-duration SCAN_DURATION

scan duration (default: 5 seconds)

1.1.3 Usage of the library

The functionality of the command-line program can also be used in your own Python programs by using this project
as a library.

See the module reference for complete API documentation.

1.2 Supported devices

Bluetooth Clocks supports the following devices:

Device Set
time

Set 12/24h
format

Read
time

Current Time Service (e.g. PineTime with InfiniTime firmware) Yes No Yes
PVVX firmware (LYWSD03MMC, MHO-C401, CGG1, CGDK2,
MJWSD05MMC, MHO-C122)

Yes No Yes

Qingping BT Clock Lite Yes No No
ThermoPro TP358/TP393 Yes Yes No
Xiaomi LYWSD02 Yes No Yes

1.2. Supported devices 5

https://bluetooth-clocks.readthedocs.io/en/latest/api/modules.html
https://www.bluetooth.com/specifications/specs/current-time-service-1-1/
https://github.com/pvvx/ATC_MiThermometer

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

1.3 Contributing

Welcome to bluetooth-clocks contributor’s guide.

This document focuses on getting any potential contributor familiarized with the development processes, but other
kinds of contributions are also appreciated.

If you are new to using git or have never collaborated in a project previously, please have a look at contribution-
guide.org. Other resources are also listed in the excellent guide created by FreeCodeCamp1.

Please notice, all users and contributors are expected to be open, considerate, reasonable, and respectful. When in
doubt, Python Software Foundation’s Code of Conduct is a good reference in terms of behavior guidelines.

1.3.1 Issue Reports

If you experience bugs or general issues with bluetooth-clocks, please have a look on the issue tracker. If you don’t
see anything useful there, please feel free to fire an issue report.

Tip: Please don’t forget to include the closed issues in your search. Sometimes a solution was already reported, and
the problem is considered solved.

New issue reports should include information about your programming environment (e.g., operating system, Python
version) and steps to reproduce the problem. Please try also to simplify the reproduction steps to a very minimal
example that still illustrates the problem you are facing. By removing other factors, you help us to identify the root
cause of the issue.

1.3.2 Documentation Improvements

You can help improve bluetooth-clocks docs by making them more readable and coherent, or by adding missing
information and correcting mistakes.

bluetooth-clocks documentation uses Sphinx as its main documentation compiler. This means that the docs are
kept in the same repository as the project code, and that any documentation update is done in the same way was a code
contribution.

The documentation is written in the reStructuredText markup language.

Tip: Please notice that the GitHub web interface provides a quick way of propose changes in bluetooth-clocks’s
files. While this mechanism can be tricky for normal code contributions, it works perfectly fine for contributing to the
docs, and can be quite handy.

If you are interested in trying this method out, please navigate to the docs folder in the source repository, find which
file you would like to propose changes and click in the little pencil icon at the top, to open GitHub’s code editor. Once
you finish editing the file, please write a message in the form at the bottom of the page describing which changes have
you made and what are the motivations behind them and submit your proposal.

When working on documentation changes in your local machine, you can compile them using tox:

tox -e docs

1 Even though, these resources focus on open source projects and communities, the general ideas behind collaborating with other developers to
collectively create software are general and can be applied to all sorts of environments, including private companies and proprietary code bases.

6 Chapter 1. Contents

https://opensource.guide/how-to-contribute
https://opensource.guide/how-to-contribute
https://git-scm.com
https://www.contribution-guide.org/
https://www.contribution-guide.org/
https://github.com/FreeCodeCamp/how-to-contribute-to-open-source
https://www.python.org/psf/conduct/
https://github.com/koenvervloesem/bluetooth-clocks/issues
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/
https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files
https://github.com/koenvervloesem/bluetooth-clocks
https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files
https://tox.wiki/en/stable/

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

and use Python’s built-in web server for a preview in your web browser (http://localhost:8000):

python3 -m http.server --directory 'docs/_build/html'

1.3.3 Code Contributions

See the module reference for complete documentation of this library.

If you want to add support for a new device, you need to create a subclass of the BluetoothClock class. Have a look
at the existing classes for devices.

Submit an issue

Before you work on any non-trivial code contribution it’s best to first create a report in the issue tracker to start a
discussion on the subject. This often provides additional considerations and avoids unnecessary work.

Create an environment

Before you start coding, we recommend creating an isolated virtual environment to avoid any problems with your
installed Python packages. This can easily be done via either virtualenv:

virtualenv <PATH TO VENV>
source <PATH TO VENV>/bin/activate

or Miniconda:

conda create -n bluetooth-clocks python=3 six virtualenv pytest pytest-cov
conda activate bluetooth-clocks

Clone the repository

1. Create an user account on GitHub if you do not already have one.

2. Fork the project repository: click on the Fork button near the top of the page. This creates a copy of the code
under your account on GitHub.

3. Clone this copy to your local disk:

git clone git@github.com:YourLogin/bluetooth-clocks.git
cd bluetooth-clocks

4. You should run:

pip install -U pip setuptools -e .

to be able to import the package under development in the Python REPL.

5. Install pre-commit:

pip install pre-commit
pre-commit install

bluetooth-clocks comes with a lot of hooks configured to automatically help the developer to check the code
being written.

1.3. Contributing 7

https://bluetooth-clocks.readthedocs.io/en/latest/api/modules.html
https://github.com/koenvervloesem/bluetooth-clocks/issues
https://realpython.com/python-virtual-environments-a-primer/
https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/en/latest/miniconda.html
https://github.com/koenvervloesem/bluetooth-clocks
https://pre-commit.com/

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Implement your changes

1. Create a branch to hold your changes:

git checkout -b my-feature

and start making changes. Never work on the main branch!

2. Start your work on this branch. Don’t forget to add docstrings to new functions, modules and classes, especially
if they are part of public APIs.

3. Add yourself to the list of contributors in AUTHORS.rst.

4. When you’re done editing, do:

git add <MODIFIED FILES>
git commit

to record your changes in git.

Please make sure to see the validation messages from pre-commit and fix any eventual issues. This should
automatically use flake8/black to check/fix the code style in a way that is compatible with the project.

Important: Don’t forget to add unit tests and documentation in case your contribution adds an additional feature
and is not just a bugfix.

Moreover, writing a descriptive commit message is highly recommended. In case of doubt, you can check the
commit history with:

git log --graph --decorate --pretty=oneline --abbrev-commit --all

to look for recurring communication patterns.

5. Please check that your changes don’t break any unit tests with:

tox

(after having installed tox with pip install tox or pipx).

You can also use tox to run several other pre-configured tasks in the repository. Try tox -av to see a list of the
available checks.

Submit your contribution

1. If everything works fine, push your local branch to GitHub with:

git push -u origin my-feature

2. Go to the web page of your fork and click “Create pull request” to send your changes for review.

Find more detailed information in creating a PR. You might also want to open the PR as a draft first and mark it
as ready for review after the feedbacks from the continuous integration (CI) system or any required fixes.

8 Chapter 1. Contents

https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://git-scm.com
https://pre-commit.com/
https://flake8.pycqa.org/en/stable/
https://pypi.org/project/black/
https://chris.beams.io/posts/git-commit
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Troubleshooting

The following tips can be used when facing problems to build or test the package:

1. Make sure to fetch all the tags from the upstream repository. The command git describe --abbrev=0
--tags should return the version you are expecting. If you are trying to run CI scripts in a fork repository,
make sure to push all the tags. You can also try to remove all the egg files or the complete egg folder, i.e., .eggs,
as well as the *.egg-info folders in the src folder or potentially in the root of your project.

2. Sometimes tox misses out when new dependencies are added, especially to setup.cfg and docs/
requirements.txt. If you find any problems with missing dependencies when running a command with tox,
try to recreate the tox environment using the -r flag. For example, instead of:

tox -e docs

Try running:

tox -r -e docs

3. Make sure to have a reliable tox installation that uses the correct Python version (e.g., 3.8+). When in doubt
you can run:

tox --version
OR
which tox

If you have trouble and are seeing weird errors upon running tox, you can also try to create a dedicated virtual
environment with a tox binary freshly installed. For example:

virtualenv .venv
source .venv/bin/activate
.venv/bin/pip install tox
.venv/bin/tox -e all

4. Pytest can drop you in an interactive session in the case an error occurs. In order to do that you need to pass
a --pdb option (for example by running tox -- -k <NAME OF THE FALLING TEST> --pdb). You can also
setup breakpoints manually instead of using the --pdb option.

1.3.4 Maintainer tasks

Releases

If you are part of the group of maintainers and have correct user permissions on PyPI, the following steps can be used
to release a new version for bluetooth-clocks:

1. Make sure all unit tests are successful.

2. Tag the current commit on the main branch with a release tag, e.g., v1.2.3.

3. Push the new tag to the upstream repository, e.g., git push upstream v1.2.3

4. Clean up the dist and build folders with tox -e clean (or rm -rf dist build) to avoid confusion with
old builds and Sphinx docs.

5. Run tox -e build and check that the files in dist have the correct version (no .dirty or git hash) according
to the git tag. Also check the sizes of the distributions, if they are too big (e.g., > 500KB), unwanted clutter may
have been accidentally included.

1.3. Contributing 9

https://github.com/koenvervloesem/bluetooth-clocks
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://tox.wiki/en/stable/
https://docs.pytest.org/en/stable/how-to/failures.html#using-python-library-pdb-with-pytest
https://pypi.org/
https://github.com/koenvervloesem/bluetooth-clocks
https://git-scm.com
https://git-scm.com

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

6. Run tox -e publish -- --repository pypi and check that everything was uploaded to PyPI correctly.

1.4 License

The MIT License (MIT)

Copyright (c) 2023 Koen Vervloesem

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.5 Contributors

• Koen Vervloesem

1.6 Changelog

1.6.1 Version 0.2.0: Get time from PVVX (2023-07-04)

This release adds support for reading the time from devices with PVVX firmware.

• Migrate code linting to Ruff, apply fixes by @koenvervloesem in https://github.com/koenvervloesem/
bluetooth-clocks/pull/15

• Add MJWSD05MMC and MHO-C122 to list of supported PVVX models by @koenvervloesem in https://github.
com/koenvervloesem/bluetooth-clocks/pull/16

• Assume if TYPE_CHECKING is covered by @koenvervloesem in https://github.com/koenvervloesem/
bluetooth-clocks/pull/17

• Deprecate Python 3.7 by @koenvervloesem in https://github.com/koenvervloesem/bluetooth-clocks/pull/18

• Add read time command for PVVX firmware by @koenvervloesem in https://github.com/koenvervloesem/
bluetooth-clocks/pull/19

10 Chapter 1. Contents

https://pypi.org/
https://github.com/koenvervloesem
https://github.com/koenvervloesem/bluetooth-clocks/pull/15
https://github.com/koenvervloesem/bluetooth-clocks/pull/15
https://github.com/koenvervloesem/bluetooth-clocks/pull/16
https://github.com/koenvervloesem/bluetooth-clocks/pull/16
https://github.com/koenvervloesem/bluetooth-clocks/pull/17
https://github.com/koenvervloesem/bluetooth-clocks/pull/17
https://github.com/koenvervloesem/bluetooth-clocks/pull/18
https://github.com/koenvervloesem/bluetooth-clocks/pull/19
https://github.com/koenvervloesem/bluetooth-clocks/pull/19

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

1.6.2 Version 0.1.2: Local time, please (2023-02-02)

This is a bugfix release. Previously the time on Qingping devices and devices running the PVVX ATC firmware was
set to UTC instead of local time.

• Autoupdate pre-commit by @koenvervloesem in https://github.com/koenvervloesem/bluetooth-clocks/pull/12

• Fix local time on PVVX and Qingping devices by @koenvervloesem in https://github.com/koenvervloesem/
bluetooth-clocks/pull/13

1.6.3 Version 0.1.1 (2023-01-23)

This is a bugfix release.

• Fix doctest: use UTC in get_time_from_bytes example by @koenvervloesem in https://github.com/
koenvervloesem/bluetooth-clocks/pull/3

• Fix link to Bleak’s BLEDevice in docs by @koenvervloesem in https://github.com/koenvervloesem/
bluetooth-clocks/pull/4

• Add codecov badge to README by @koenvervloesem in https://github.com/koenvervloesem/bluetooth-clocks/
pull/5

• Various documentation fixes by @koenvervloesem in https://github.com/koenvervloesem/bluetooth-clocks/pull/
6

• Build documentation on Read The Docs with Python 3.11 by @koenvervloesem in https://github.com/
koenvervloesem/bluetooth-clocks/pull/7

• Use Ubuntu 22.04/Python 3.11 for Read The Docs by @koenvervloesem in https://github.com/koenvervloesem/
bluetooth-clocks/pull/8

• Update to PyScaffold v4.4 project features by @koenvervloesem in https://github.com/koenvervloesem/
bluetooth-clocks/pull/9

• Import future annotations by @koenvervloesem in https://github.com/koenvervloesem/bluetooth-clocks/pull/10

1.6.4 Version 0.1.0 (2023-01-20)

Initial version of Bluetooth Clocks

1.7 bluetooth_clocks

1.7.1 bluetooth_clocks package

Set and get the time on various Bluetooth clocks.

This project offers a way to easily recognize Bluetooth Low Energy clocks from their advertisements and has a device-
independent API to set and get the time on them.

class bluetooth_clocks.BluetoothClock(device: BLEDevice)
Bases: ABC

Abstract class that represents the definition of a Bluetooth clock.

Support for every type of Bluetooth clock is implemented as a separate subclass by giving the class variables a
value and/or by overriding methods or implementing abstract methods of this class.

1.7. bluetooth_clocks 11

https://github.com/koenvervloesem/bluetooth-clocks/pull/12
https://github.com/koenvervloesem/bluetooth-clocks/pull/13
https://github.com/koenvervloesem/bluetooth-clocks/pull/13
https://github.com/koenvervloesem/bluetooth-clocks/pull/3
https://github.com/koenvervloesem/bluetooth-clocks/pull/3
https://github.com/koenvervloesem/bluetooth-clocks/pull/4
https://github.com/koenvervloesem/bluetooth-clocks/pull/4
https://github.com/koenvervloesem/bluetooth-clocks/pull/5
https://github.com/koenvervloesem/bluetooth-clocks/pull/5
https://github.com/koenvervloesem/bluetooth-clocks/pull/6
https://github.com/koenvervloesem/bluetooth-clocks/pull/6
https://github.com/koenvervloesem/bluetooth-clocks/pull/7
https://github.com/koenvervloesem/bluetooth-clocks/pull/7
https://github.com/koenvervloesem/bluetooth-clocks/pull/8
https://github.com/koenvervloesem/bluetooth-clocks/pull/8
https://github.com/koenvervloesem/bluetooth-clocks/pull/9
https://github.com/koenvervloesem/bluetooth-clocks/pull/9
https://github.com/koenvervloesem/bluetooth-clocks/pull/10
https://docs.python.org/3.11/library/abc.html#abc.ABC

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

address

The Bluetooth address of the device.

Type
str

name

The name of the device, or None if it doesn’t have a name.

Type
str | None

CHAR_UUID: ClassVar[UUID]

The UUID of the characteristic used to read/write the time.

DEVICE_TYPE: ClassVar[str]

The name of the device type.

LOCAL_NAME: ClassVar[str | None]

The local name used to recognize this type of device.

This is None if the local name isn’t used to recognize the device.

LOCAL_NAME_STARTS_WITH: ClassVar[bool | None]

Whether the local name should start with LOCAL_NAME.

True if the start of LOCAL_NAME is used to recognize this type of device. False if the local name should
exactly match LOCAL_NAME. This is None if the local name isn’t used to recognize the device.

SERVICE_UUID: ClassVar[UUID]

The UUID of the service used to read/write the time.

TIME_GET_FORMAT: ClassVar[str | None]

The format string to convert bytes read from the device to a time.

This is None if the device doesn’t support reading the time.

TIME_SET_FORMAT: ClassVar[str]

The format string to convert a time to bytes written to the device.

WRITE_WITH_RESPONSE: ClassVar[bool]

True if the bytes to set the time should use write with response.

classmethod create_from_advertisement(device: BLEDevice, advertisement_data:
AdvertisementData)→ BluetoothClock

Create object of a BluetoothClock subclass from advertisement data.

This is a factory method that you use if you don’t know the exact device type beforehand. This method
automatically recognizes the device type and creates an object of the corresponding subclass.

Parameters

• device (BLEDevice) – The Bluetooth device.

• advertisement_data (AdvertisementData) – The advertisement data.

Raises
UnsupportedDeviceError – If the device with address address isn’t supported.

Returns
An object of the subclass corresponding to the recognized device type.

12 Chapter 1. Contents

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://bleak.readthedocs.io/en/latest/api/index.html#bleak.backends.device.BLEDevice
https://bleak.readthedocs.io/en/latest/backends/index.html#bleak.backends.scanner.AdvertisementData

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Return type
BluetoothClock

abstract get_bytes_from_time(timestamp: float, ampm: bool = False)→ bytes
Generate the bytes to set the time on this device.

Override this method in a subclass to implement the device’s time format.

Parameters

• timestamp (float) – The time encoded as a Unix timestamp.

• ampm (bool) – True if the device should show the time with AM/PM, False if it should use
24-hour format. Devices that don’t support choosing the mode can ignore this argument.

Returns
The bytes needed to set the time of the device to timestamp.

Return type
bytes

Example

>>> from bluetooth_clocks.devices.thermopro import TP393
>>> from bleak.backends.device import BLEDevice
>>> from datetime import datetime
>>> clock = TP393(BLEDevice("10:76:36:14:2A:3D", "TP393 (2A3D)", {}, -67))
>>> timestamp = datetime.fromisoformat("2023-01-07 17:32:50").timestamp()
>>> clock.get_bytes_from_time(timestamp, ampm=True).hex()
'a517010711203206005a'

async get_time()→ float
Get the time of the Bluetooth clock.

Raises
TimeNotReadableError – If the device doesn’t support getting the time.

Returns
The time of the Bluetooth clock.

Return type
float

get_time_from_bytes(time_bytes: bytes)→ float
Convert bytes read from a device to a timestamp.

Override this method in a subclass for a device that supports getting the time.

Parameters
time_bytes (bytes) – The raw bytes read from the device.

Raises

• InvalidTimeBytesError – If time_bytes don’t have the right format.

• TimeNotReadableError – If the device doesn’t support getting the time.

Returns
The time encoded as a Unix timestamp.

Return type
float

1.7. bluetooth_clocks 13

https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Example

>>> from bluetooth_clocks.devices.xiaomi import LYWSD02
>>> from bleak.backends.device import BLEDevice
>>> from datetime import datetime
>>> clock = LYWSD02(BLEDevice("E7:2E:00:B1:38:96", "", {}, -67))
>>> timestamp = clock.get_time_from_bytes(
... bytes([0xdd, 0xbc, 0xb9, 0x63, 0x00]))
>>> print(datetime.utcfromtimestamp(timestamp).strftime("%Y-%m-%d %H:%M:%S"))
2023-01-07 18:41:33

classmethod is_readable()→ bool
Test whether you can read the time from this device.

Returns
True if this device supports reading the time, False otherwise.

Return type
bool

Example

>>> from bluetooth_clocks.devices.xiaomi import LYWSD02
>>> from bluetooth_clocks.devices.qingping import CGC1
>>> LYWSD02.is_readable()
True
>>> CGC1.is_readable()
False

classmethod recognize(device: BLEDevice, advertisement_data: AdvertisementData)→ bool
Recognize this device type from advertisement data.

By default this checks whether the advertisement data has a local name that is equal to or starts with LO-
CAL_NAME, by calling recognize_from_local_name().

Override this method in a subclass if the device type should be recognized in another way from advertise-
ment data.

Parameters

• device (BLEDevice) – The Bluetooth device.

• advertisement_data (AdvertisementData) – The advertisement data.

Returns
True if this subclass of BluetoothClock recognizes the device, False otherwise.

Return type
bool

classmethod recognize_from_local_name(local_name: str | None)→ bool
Recognize the device from an advertised local name.

This is a helper method that subclasses can use to implement their recognize() method.

Parameters
local_name (str | None = None) – The local name of the device, or None if it doesn’t
advertise its local name.

14 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#bool
https://bleak.readthedocs.io/en/latest/api/index.html#bleak.backends.device.BLEDevice
https://bleak.readthedocs.io/en/latest/backends/index.html#bleak.backends.scanner.AdvertisementData
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Returns
True if this subclass of BluetoothClock recognizes the device from its local name lo-
cal_name, False otherwise.

Return type
bool

classmethod recognize_from_service_uuids(service_uuids: list[str] | None)→ bool
Recognize this device type from service UUIDs.

This is a helper method that subclasses can use to implement their recognize() method.

Parameters
service_uuids (list[str] | None = None) – Service UUIDs of the device, or None if
the device doesn’t advertise service UUIDs.

Returns
True if this subclass of BluetoothClock recognizes the device from the service UUIDs in
service_uuids, False otherwise.

Return type
bool

async set_time(timestamp: float | None = None, ampm: bool = False)→ None
Set the time of the Bluetooth clock.

Parameters

• timestamp (float | None = None) – The timestamp to write to the clock. If this is
None, the current time is used.

• ampm (bool) – True if the device should show the time with AM/PM, False if it should use
24-hour format. Devices that don’t support choosing the mode can ignore this argument.

bluetooth_clocks.MICROSECONDS = 1000000

The number of microseconds in a second.

You can use this constant in subclasses of BluetoothClock .

bluetooth_clocks.SECONDS_IN_HOUR = 3600

The number of seconds in an hour.

You can use this constant in subclasses of BluetoothClock .

bluetooth_clocks.supported_devices()→ list[str]
Get a list of names of supported devices.

Returns
A list of the names of devices supported by this library.

Return type
list[str]

1.7. bluetooth_clocks 15

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#list
https://docs.python.org/3.11/library/stdtypes.html#str

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Example

>>> from bluetooth_clocks import supported_devices
>>> "ThermoPro TP393" in supported_devices()
True

Subpackages

bluetooth_clocks.devices package

Device-specific Bluetooth clock support.

Each submodule in this package implements support for a specific type of Bluetooth clock.

Each class in these submodules implements support for a specific model Bluetooth clock.

For instance, the bluetooth_clocks.devices.thermopro module has classes bluetooth_clocks.devices.
thermopro.TP358 and bluetooth_clocks.devices.thermopro.TP393 for the ThermoPro TP358 and TP393,
respectively.

Submodules

bluetooth_clocks.devices.current_time_service module

Bluetooth clock support for devices implementing the Current Time Service.

This includes the PineTime with InfiniTime firmware.

class bluetooth_clocks.devices.current_time_service.CurrentTimeService(device: BLEDevice)
Bases: BluetoothClock

Bluetooth clock support for devices implementing the Current Time Service.

This implements the standardized Bluetooth service Current Time Service (https://www.bluetooth.com/
specifications/specs/current-time-service-1-1/).

CHAR_UUID: ClassVar[UUID] = UUID('00002a2b-0000-1000-8000-00805f9b34fb')

The UUID of the characteristic used to read/write the time.

DEVICE_TYPE: ClassVar[str] = 'Current Time Service'

The name of the device type.

SERVICE_UUID: ClassVar[UUID] = UUID('00001805-0000-1000-8000-00805f9b34fb')

The UUID of the service used to read/write the time.

TIME_GET_FORMAT: ClassVar[str | None] = '<HBBBBBBB'

The format string to convert bytes read from the Current Time Service to a time.

This starts with an unsigned short in little-endian format, followed by seven bytes.

TIME_SET_FORMAT: ClassVar[str] = '<HBBBBBBBB'

The format string to convert a time to bytes written to the device.

This starts with an unsigned short in little-endian format, followed by eight bytes.

16 Chapter 1. Contents

https://www.bluetooth.com/specifications/specs/current-time-service-1-1/
https://www.bluetooth.com/specifications/specs/current-time-service-1-1/
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

WRITE_WITH_RESPONSE: ClassVar[bool] = True

Writing the time to the Current Time Service needs write with response.

get_bytes_from_time(timestamp: float, ampm: bool = False)→ bytes
Generate the bytes to set the time on the Current Time Service.

Parameters

• timestamp (float) – The time encoded as a Unix timestamp.

• ampm (bool) – True if the device should show the time with AM/PM, False if it should
use 24-hour format. The Current Time Service ignores this argument, as it doesn’t support
this option.

Returns
The bytes needed to set the time of the device to timestamp.

Return type
bytes

get_time_from_bytes(time_bytes: bytes)→ float
Convert bytes read from the Current Time Service to a timestamp.

Parameters
time_bytes (bytes) – The raw bytes read from the device.

Raises
InvalidTimeBytesError – If time_bytes don’t have the right format.

Returns
The time encoded as a Unix timestamp.

Return type
float

classmethod recognize(device: BLEDevice, advertisement_data: AdvertisementData)→ bool
Recognize the Current Time Service from advertisement data.

This checks whether the Current Time Service’s service UUID is in the list of advertised service UUIDs.

Parameters

• device (BLEDevice) – The Bluetooth device.

• advertisement_data (AdvertisementData) – The advertisement data.

Returns
True if the device is recognized as a Current Time Service, False otherwise.

Return type
bool

class bluetooth_clocks.devices.current_time_service.InfiniTime(device: BLEDevice)
Bases: CurrentTimeService

Bluetooth clock support for the PineTime with InfiniTime firmware.

DEVICE_TYPE: ClassVar[str] = 'InfiniTime'

The name of the device type.

LOCAL_NAME: ClassVar[str | None] = 'InfiniTime'

The local name used to recognize this type of device.

1.7. bluetooth_clocks 17

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://bleak.readthedocs.io/en/latest/api/index.html#bleak.backends.device.BLEDevice
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

LOCAL_NAME_STARTS_WITH: ClassVar[bool | None] = False

The local name should exactly match LOCAL_NAME.

classmethod recognize(device: BLEDevice, advertisement_data: AdvertisementData)→ bool
Recognize the PineTime with InfiniTime firmware from advertisement data.

This checks whether the advertisement data has a local name that is equal to or starts with LOCAL_NAME.

Parameters

• device (BLEDevice) – The Bluetooth device.

• advertisement_data (AdvertisementData) – The advertisement data.

Returns
True if the device is recognized as a PineTime with InfiniTime firmware, False otherwise.

Return type
bool

bluetooth_clocks.devices.pvvx module

Bluetooth clock support for devices running the PVVX firmware.

class bluetooth_clocks.devices.pvvx.PVVX(device: BLEDevice)
Bases: BluetoothClock

Bluetooth clock support for devices running the PVVX firmware.

CHAR_UUID: ClassVar[UUID] = UUID('00001f1f-0000-1000-8000-00805f9b34fb')

The UUID of the characteristic used to read/write the time.

DEVICE_TYPE: ClassVar[str] = 'PVVX'

The name of the device type.

PVVX_GET_SET_TIME_COMMAND = 35

Command for PVVX firmware to Get/Set Time.

SERVICE_DATA_UUID = UUID('0000181a-0000-1000-8000-00805f9b34fb')

UUID of the service data the PVVX device is advertising.

SERVICE_UUID: ClassVar[UUID] = UUID('00001f10-0000-1000-8000-00805f9b34fb')

The UUID of the service used to read/write the time.

TIME_GET_FORMAT: ClassVar[str | None] = '<BLL'

The format string to convert bytes read from the device to a time.

TIME_SET_FORMAT: ClassVar[str] = '<BL'

The format string to convert a time to bytes written to the PVVX device.

WRITE_WITH_RESPONSE: ClassVar[bool] = False

Writing the time to the PVVX device needs write without response.

get_bytes_from_time(timestamp: float, ampm: bool = False)→ bytes
Generate the bytes to set the time on the PVVX device.

Parameters

• timestamp (float) – The time encoded as a Unix timestamp.

18 Chapter 1. Contents

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://bleak.readthedocs.io/en/latest/api/index.html#bleak.backends.device.BLEDevice
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

• ampm (bool) – True if the device should show the time with AM/PM, False if it should
use 24-hour format. The PVVX device ignores this argument, as it doesn’t support this
option.

Returns
The bytes needed to set the time of the device to timestamp.

Return type
bytes

async get_time()→ float
Get the time of the PVVX device.

Returns
The time of the Bluetooth clock.

Return type
float

get_time_from_bytes(time_bytes: bytes)→ float
Convert bytes read from the PVVX device to a timestamp.

Parameters
time_bytes (bytes) – The raw bytes read from the device.

Raises
InvalidTimeBytesError – If time_bytes don’t have the right format.

Returns
The time encoded as a Unix timestamp.

Return type
float

classmethod recognize(device: BLEDevice, advertisement_data: AdvertisementData)→ bool
Recognize the PVVX device from advertisement data.

This checks whether the advertisement has service data with service UUID 0x181a (PVVX custom format).

Parameters

• device (BLEDevice) – The Bluetooth device.

• advertisement_data (AdvertisementData) – The advertisement data.

Returns
True if the device is recognized as a PVVX device, False otherwise.

Return type
bool

bluetooth_clocks.devices.qingping module

Bluetooth clock support for Qingping clocks.

class bluetooth_clocks.devices.qingping.CGC1(device: BLEDevice)
Bases: BluetoothClock

Bluetooth clock support for the Qingping BT Clock Lite (CGC1).

1.7. bluetooth_clocks 19

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://bleak.readthedocs.io/en/latest/api/index.html#bleak.backends.device.BLEDevice
https://docs.python.org/3.11/library/functions.html#bool

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

CHAR_UUID: ClassVar[UUID] = UUID('00000001-0000-1000-8000-00805f9b34fb')

The UUID of the characteristic used to write the time.

DEVICE_TYPE: ClassVar[str] = 'Qingping BT Clock Lite'

The name of the device type.

LOCAL_NAME: ClassVar[str | None] = 'Qingping BT Clock Lite'

The local name used to recognize this type of device.

LOCAL_NAME_STARTS_WITH: ClassVar[bool | None] = False

The local name should exactly match LOCAL_NAME.

SERVICE_UUID: ClassVar[UUID] = UUID('22210000-554a-4546-5542-46534450464d')

The UUID of the service used to write the time.

TIME_GET_FORMAT: ClassVar[str | None] = None

The Qingping BT Clock Lite doesn’t support reading the time.

TIME_SET_FORMAT: ClassVar[str] = '<BBL'

The format string to convert a time to bytes written to the device.

This starts with two bytes, followed by an unsigned long in little-endian format.

WRITE_WITH_RESPONSE: ClassVar[bool] = True

We use write with response to write the time to the Qingping BT Clock Lite.

Note: The device also supports write without response.

get_bytes_from_time(timestamp: float, ampm: bool = False)→ bytes
Generate the bytes to set the time on the Qingping BT Clock Lite.

Parameters

• timestamp (float) – The time encoded as a Unix timestamp.

• ampm (bool) – True if the device should show the time with AM/PM, False if it should use
24-hour format. The Qingping BT Clock Lite ignores this argument, as it doesn`t support
this option.

Returns
The bytes needed to set the time of the device to timestamp.

Return type
bytes

bluetooth_clocks.devices.thermopro module

Bluetooth clock support for ThermoPro sensors with clock.

class bluetooth_clocks.devices.thermopro.TP358(device: BLEDevice)
Bases: TPXXX

Bluetooth clock support for the ThermoPro TP358.

DEVICE_TYPE: ClassVar[str] = 'ThermoPro TP358'

The name of the device type.

LOCAL_NAME: ClassVar[str | None] = 'TP358'

The local name used to recognize this type of device.

20 Chapter 1. Contents

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

LOCAL_NAME_STARTS_WITH: ClassVar[bool | None] = True

The local name should start with LOCAL_NAME.

class bluetooth_clocks.devices.thermopro.TP393(device: BLEDevice)
Bases: TPXXX

Bluetooth clock support for the ThermoPro TP393.

DEVICE_TYPE: ClassVar[str] = 'ThermoPro TP393'

The name of the device type.

LOCAL_NAME: ClassVar[str | None] = 'TP393'

The local name used to recognize this type of device.

LOCAL_NAME_STARTS_WITH: ClassVar[bool | None] = True

The local name should start with LOCAL_NAME.

class bluetooth_clocks.devices.thermopro.TPXXX(device: BLEDevice)
Bases: BluetoothClock

Bluetooth clock support for ThermoPro sensors with clock.

This class isn’t meant to be instantiated. Subclasses implement support for specific ThermoPro device types by
giving values to the class variables DEVICE_TYPE, LOCAL_NAME, and LOCAL_NAME_STARTS_WITH.

CHAR_UUID: ClassVar[UUID] = UUID('00010203-0405-0607-0809-0a0b0c0d2b11')

The UUID of the characteristic used to write the time.

SERVICE_UUID: ClassVar[UUID] = UUID('00010203-0405-0607-0809-0a0b0c0d1910')

The UUID of the service used to write the time.

TIME_GET_FORMAT: ClassVar[str | None] = None

ThermoPro devices don`t support reading the time.

TIME_SET_FORMAT: ClassVar[str] = 'BBBBBBBBBB'

The format string to convert a time to bytes written to the device.

These are ten bytes.

WRITE_WITH_RESPONSE: ClassVar[bool] = False

Writing the time to ThermoPro devices needs write without response.

get_bytes_from_time(timestamp: float, ampm: bool = False)→ bytes
Generate the bytes to set the time on ThermoPro devices.

Parameters

• timestamp (float) – The time encoded as a Unix timestamp.

• ampm (bool) – True if the device should show the time with AM/PM, False if it should
use 24-hour format.

Returns
The bytes needed to set the time of the device to timestamp.

Return type
bytes

1.7. bluetooth_clocks 21

https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

bluetooth_clocks.devices.xiaomi module

Bluetooth clock support for Xiaomi devices.

class bluetooth_clocks.devices.xiaomi.LYWSD02(device: BLEDevice)
Bases: BluetoothClock

Bluetooth clock support for the Xiaomi LYWSD02.

CHAR_UUID: ClassVar[UUID] = UUID('ebe0ccb7-7a0a-4b0c-8a1a-6ff2997da3a6')

The UUID of the characteristic used to write the time.

DEVICE_TYPE: ClassVar[str] = 'Xiaomi LYWSD02'

The name of the device type.

LOCAL_NAME: ClassVar[str | None] = 'LYWSD02'

The local name used to recognize this type of device.

LOCAL_NAME_STARTS_WITH: ClassVar[bool | None] = False

The local name should exactly match LOCAL_NAME.

SERVICE_UUID: ClassVar[UUID] = UUID('ebe0ccb0-7a0a-4b0c-8a1a-6ff2997da3a6')

The UUID of the service used to write the time.

TIME_GET_FORMAT: ClassVar[str | None] = '<Lb'

The format string to convert bytes read from the device to a time.

TIME_SET_FORMAT: ClassVar[str] = '<Lb'

The format string to convert a time to bytes written to the device.

WRITE_WITH_RESPONSE: ClassVar[bool] = False

Writing the time to the device needs write without response.

get_bytes_from_time(timestamp: float, ampm: bool = False)→ bytes
Generate the bytes to set the time on the Xiaomi LYWSD02.

Parameters

• timestamp (float) – The time encoded as a Unix timestamp.

• ampm (bool) – True if the device should show the time with AM/PM, False if it should
use 24-hour format. The Xiaomi LYWSD02 ignores this argument, as it doesn’t support
this option.

Returns
The bytes needed to set the time of the device to timestamp.

Return type
bytes

get_time_from_bytes(time_bytes: bytes)→ float
Convert bytes read from the Xiaomi LYWSD02 to a timestamp.

Parameters
time_bytes (bytes) – The raw bytes read from the device.

Raises
InvalidTimeBytesError – If time_bytes don’t have the right format.

Returns
The time encoded as a Unix timestamp.

22 Chapter 1. Contents

https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/functions.html#bool
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/stdtypes.html#bytes
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#bytes

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Return type
float

Submodules

bluetooth_clocks.exceptions module

Module with exceptions raised by this library.

exception bluetooth_clocks.exceptions.BluetoothClocksError

Bases: Exception

Base class for all exceptions raised by this library.

exception bluetooth_clocks.exceptions.InvalidTimeBytesError

Bases: BluetoothClocksError

Exception raised when bytes read from a device don’t have the right format.

exception bluetooth_clocks.exceptions.TimeNotReadableError

Bases: BluetoothClocksError

Exception raised when reading the time on a device that doesn’t support this.

exception bluetooth_clocks.exceptions.UnsupportedDeviceError

Bases: BluetoothClocksError

Exception raised when a device is not supported.

bluetooth_clocks.scanners module

Module with functions to scan for Bluetooth clocks.

async bluetooth_clocks.scanners.discover_clocks(callback: Callable[[BluetoothClock], None],
scan_duration: float = 5.0)→ None

Discover Bluetooth clocks.

Parameters

• callback (Callable[[BluetoothClock], None]) – Function to call when a clock has
been discovered. This function gets passed the discovered BluetoothClock object as its
argument.

• scan_duration (float) – The scan duration for discovering devices. Defaults to 5 seconds.

async bluetooth_clocks.scanners.find_clock(address: str, scan_duration: float = 5.0)→ BluetoothClock
| None

Get BluetoothClock object from Bluetooth address.

Parameters

• address (str) – The Bluetooth address of the device.

• scan_duration (float) – The scan duration for finding the device. Defaults to 5 seconds.

Raises
UnsupportedDeviceError – If the device with address address isn`t supported.

Returns
A BluetoothClock object for the device, or None if the device isn’t found.

1.7. bluetooth_clocks 23

https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/exceptions.html#Exception
https://docs.python.org/3.11/library/typing.html#typing.Callable
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#float
https://docs.python.org/3.11/library/constants.html#None
https://docs.python.org/3.11/library/stdtypes.html#str
https://docs.python.org/3.11/library/functions.html#float

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

Return type
BluetoothClock | None

24 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

25

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

26 Chapter 2. Indices and tables

PYTHON MODULE INDEX

b
bluetooth_clocks, 11
bluetooth_clocks.devices, 16
bluetooth_clocks.devices.current_time_service,

16
bluetooth_clocks.devices.pvvx, 18
bluetooth_clocks.devices.qingping, 19
bluetooth_clocks.devices.thermopro, 20
bluetooth_clocks.devices.xiaomi, 22
bluetooth_clocks.exceptions, 23
bluetooth_clocks.scanners, 23

27

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

28 Python Module Index

INDEX

A
address (bluetooth_clocks.BluetoothClock attribute), 11

B
bluetooth_clocks

module, 11
bluetooth_clocks.devices
module, 16

bluetooth_clocks.devices.current_time_service
module, 16

bluetooth_clocks.devices.pvvx
module, 18

bluetooth_clocks.devices.qingping
module, 19

bluetooth_clocks.devices.thermopro
module, 20

bluetooth_clocks.devices.xiaomi
module, 22

bluetooth_clocks.exceptions
module, 23

bluetooth_clocks.scanners
module, 23

BluetoothClock (class in bluetooth_clocks), 11
BluetoothClocksError, 23

C
CGC1 (class in bluetooth_clocks.devices.qingping), 19
CHAR_UUID (bluetooth_clocks.BluetoothClock attribute),

12
CHAR_UUID (bluetooth_clocks.devices.current_time_service.CurrentTimeService

attribute), 16
CHAR_UUID (bluetooth_clocks.devices.pvvx.PVVX at-

tribute), 18
CHAR_UUID (bluetooth_clocks.devices.qingping.CGC1

attribute), 19
CHAR_UUID (bluetooth_clocks.devices.thermopro.TPXXX

attribute), 21
CHAR_UUID (bluetooth_clocks.devices.xiaomi.LYWSD02

attribute), 22
create_from_advertisement() (blue-

tooth_clocks.BluetoothClock class method),
12

CurrentTimeService (class in blue-
tooth_clocks.devices.current_time_service),
16

D
DEVICE_TYPE (bluetooth_clocks.BluetoothClock at-

tribute), 12
DEVICE_TYPE (bluetooth_clocks.devices.current_time_service.CurrentTimeService

attribute), 16
DEVICE_TYPE (bluetooth_clocks.devices.current_time_service.InfiniTime

attribute), 17
DEVICE_TYPE (bluetooth_clocks.devices.pvvx.PVVX at-

tribute), 18
DEVICE_TYPE (bluetooth_clocks.devices.qingping.CGC1

attribute), 20
DEVICE_TYPE (bluetooth_clocks.devices.thermopro.TP358

attribute), 20
DEVICE_TYPE (bluetooth_clocks.devices.thermopro.TP393

attribute), 21
DEVICE_TYPE (bluetooth_clocks.devices.xiaomi.LYWSD02

attribute), 22
discover_clocks() (in module blue-

tooth_clocks.scanners), 23

F
find_clock() (in module bluetooth_clocks.scanners),

23

G
get_bytes_from_time() (blue-

tooth_clocks.BluetoothClock method), 13
get_bytes_from_time() (blue-

tooth_clocks.devices.current_time_service.CurrentTimeService
method), 17

get_bytes_from_time() (blue-
tooth_clocks.devices.pvvx.PVVX method),
18

get_bytes_from_time() (blue-
tooth_clocks.devices.qingping.CGC1 method),
20

get_bytes_from_time() (blue-
tooth_clocks.devices.thermopro.TPXXX
method), 21

29

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

get_bytes_from_time() (blue-
tooth_clocks.devices.xiaomi.LYWSD02
method), 22

get_time() (bluetooth_clocks.BluetoothClock method),
13

get_time() (bluetooth_clocks.devices.pvvx.PVVX
method), 19

get_time_from_bytes() (blue-
tooth_clocks.BluetoothClock method), 13

get_time_from_bytes() (blue-
tooth_clocks.devices.current_time_service.CurrentTimeService
method), 17

get_time_from_bytes() (blue-
tooth_clocks.devices.pvvx.PVVX method),
19

get_time_from_bytes() (blue-
tooth_clocks.devices.xiaomi.LYWSD02
method), 22

I
InfiniTime (class in blue-

tooth_clocks.devices.current_time_service),
17

InvalidTimeBytesError, 23
is_readable() (bluetooth_clocks.BluetoothClock class

method), 14

L
LOCAL_NAME (bluetooth_clocks.BluetoothClock at-

tribute), 12
LOCAL_NAME (bluetooth_clocks.devices.current_time_service.InfiniTime

attribute), 17
LOCAL_NAME (bluetooth_clocks.devices.qingping.CGC1

attribute), 20
LOCAL_NAME (bluetooth_clocks.devices.thermopro.TP358

attribute), 20
LOCAL_NAME (bluetooth_clocks.devices.thermopro.TP393

attribute), 21
LOCAL_NAME (bluetooth_clocks.devices.xiaomi.LYWSD02

attribute), 22
LOCAL_NAME_STARTS_WITH (blue-

tooth_clocks.BluetoothClock attribute), 12
LOCAL_NAME_STARTS_WITH (blue-

tooth_clocks.devices.current_time_service.InfiniTime
attribute), 17

LOCAL_NAME_STARTS_WITH (blue-
tooth_clocks.devices.qingping.CGC1 attribute),
20

LOCAL_NAME_STARTS_WITH (blue-
tooth_clocks.devices.thermopro.TP358 at-
tribute), 20

LOCAL_NAME_STARTS_WITH (blue-
tooth_clocks.devices.thermopro.TP393 at-
tribute), 21

LOCAL_NAME_STARTS_WITH (blue-
tooth_clocks.devices.xiaomi.LYWSD02 at-
tribute), 22

LYWSD02 (class in bluetooth_clocks.devices.xiaomi), 22

M
MICROSECONDS (in module bluetooth_clocks), 15
module

bluetooth_clocks, 11
bluetooth_clocks.devices, 16
bluetooth_clocks.devices.current_time_service,

16
bluetooth_clocks.devices.pvvx, 18
bluetooth_clocks.devices.qingping, 19
bluetooth_clocks.devices.thermopro, 20
bluetooth_clocks.devices.xiaomi, 22
bluetooth_clocks.exceptions, 23
bluetooth_clocks.scanners, 23

N
name (bluetooth_clocks.BluetoothClock attribute), 12

P
PVVX (class in bluetooth_clocks.devices.pvvx), 18
PVVX_GET_SET_TIME_COMMAND (blue-

tooth_clocks.devices.pvvx.PVVX attribute),
18

R
recognize() (bluetooth_clocks.BluetoothClock class

method), 14
recognize() (bluetooth_clocks.devices.current_time_service.CurrentTimeService

class method), 17
recognize() (bluetooth_clocks.devices.current_time_service.InfiniTime

class method), 18
recognize() (bluetooth_clocks.devices.pvvx.PVVX

class method), 19
recognize_from_local_name() (blue-

tooth_clocks.BluetoothClock class method),
14

recognize_from_service_uuids() (blue-
tooth_clocks.BluetoothClock class method),
15

S
SECONDS_IN_HOUR (in module bluetooth_clocks), 15
SERVICE_DATA_UUID (blue-

tooth_clocks.devices.pvvx.PVVX attribute),
18

SERVICE_UUID (bluetooth_clocks.BluetoothClock at-
tribute), 12

SERVICE_UUID (bluetooth_clocks.devices.current_time_service.CurrentTimeService
attribute), 16

30 Index

bluetooth-clocks Documentation, Release 0.2.0.post1.dev2+g5085e7a

SERVICE_UUID (bluetooth_clocks.devices.pvvx.PVVX at-
tribute), 18

SERVICE_UUID (bluetooth_clocks.devices.qingping.CGC1
attribute), 20

SERVICE_UUID (bluetooth_clocks.devices.thermopro.TPXXX
attribute), 21

SERVICE_UUID (bluetooth_clocks.devices.xiaomi.LYWSD02
attribute), 22

set_time() (bluetooth_clocks.BluetoothClock method),
15

supported_devices() (in module bluetooth_clocks),
15

T
TIME_GET_FORMAT (bluetooth_clocks.BluetoothClock at-

tribute), 12
TIME_GET_FORMAT (blue-

tooth_clocks.devices.current_time_service.CurrentTimeService
attribute), 16

TIME_GET_FORMAT (blue-
tooth_clocks.devices.pvvx.PVVX attribute),
18

TIME_GET_FORMAT (blue-
tooth_clocks.devices.qingping.CGC1 attribute),
20

TIME_GET_FORMAT (blue-
tooth_clocks.devices.thermopro.TPXXX at-
tribute), 21

TIME_GET_FORMAT (blue-
tooth_clocks.devices.xiaomi.LYWSD02 at-
tribute), 22

TIME_SET_FORMAT (bluetooth_clocks.BluetoothClock at-
tribute), 12

TIME_SET_FORMAT (blue-
tooth_clocks.devices.current_time_service.CurrentTimeService
attribute), 16

TIME_SET_FORMAT (blue-
tooth_clocks.devices.pvvx.PVVX attribute),
18

TIME_SET_FORMAT (blue-
tooth_clocks.devices.qingping.CGC1 attribute),
20

TIME_SET_FORMAT (blue-
tooth_clocks.devices.thermopro.TPXXX at-
tribute), 21

TIME_SET_FORMAT (blue-
tooth_clocks.devices.xiaomi.LYWSD02 at-
tribute), 22

TimeNotReadableError, 23
TP358 (class in bluetooth_clocks.devices.thermopro), 20
TP393 (class in bluetooth_clocks.devices.thermopro), 21
TPXXX (class in bluetooth_clocks.devices.thermopro), 21

U
UnsupportedDeviceError, 23

W
WRITE_WITH_RESPONSE (blue-

tooth_clocks.BluetoothClock attribute), 12
WRITE_WITH_RESPONSE (blue-

tooth_clocks.devices.current_time_service.CurrentTimeService
attribute), 16

WRITE_WITH_RESPONSE (blue-
tooth_clocks.devices.pvvx.PVVX attribute),
18

WRITE_WITH_RESPONSE (blue-
tooth_clocks.devices.qingping.CGC1 attribute),
20

WRITE_WITH_RESPONSE (blue-
tooth_clocks.devices.thermopro.TPXXX at-
tribute), 21

WRITE_WITH_RESPONSE (blue-
tooth_clocks.devices.xiaomi.LYWSD02 at-
tribute), 22

Index 31

	Contents
	Installation and usage
	Installation
	Usage of the command-line program
	Discovering Bluetooth clocks
	Setting the time
	Getting the time

	Usage of the library

	Supported devices
	Contributing
	Issue Reports
	Documentation Improvements
	Code Contributions
	Submit an issue
	Create an environment
	Clone the repository
	Implement your changes
	Submit your contribution
	Troubleshooting

	Maintainer tasks
	Releases

	License
	Contributors
	Changelog
	Version 0.2.0: Get time from PVVX (2023-07-04)
	Version 0.1.2: Local time, please (2023-02-02)
	Version 0.1.1 (2023-01-23)
	Version 0.1.0 (2023-01-20)

	bluetooth_clocks
	bluetooth_clocks package
	Subpackages
	bluetooth_clocks.devices package
	Submodules
	bluetooth_clocks.devices.current_time_service module
	bluetooth_clocks.devices.pvvx module
	bluetooth_clocks.devices.qingping module
	bluetooth_clocks.devices.thermopro module
	bluetooth_clocks.devices.xiaomi module

	Submodules
	bluetooth_clocks.exceptions module
	bluetooth_clocks.scanners module

	Indices and tables
	Python Module Index
	Index

